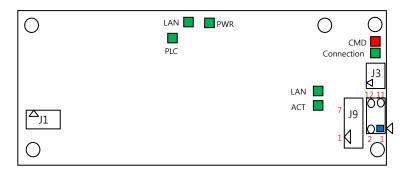
시리얼 이더넷 전력선 통신 모듈(SEP-310)

제품 특징

시리얼 이더넷 전력선 통신 모듈(SEP-310) 은 Serial 통신으로 입력되는 데이터를 이더넷 신호로 변환하여 전력선 통신으로 전송합니다. 반대로 전력선 통신으로 수신되는 데이터는 이더넷 신호로 변환하여 시리얼로 출력하게 됩니다.


시리얼 통신 ← → 이더넷통신 ← → 전력선 통신 ~~~~(파워코드)

제품 사양

항	목	내 용	비고
동작전원		DC12V/250mA	
		HomePlug AV 1.0 Protocol지원	
		최대 64개의 전력선 통신 모듈과 통신 가능	
전력선 통신		최대 전력선 통신 속도 200Mbps 지원	
		LED를 통한 동작 상태 표시	
		주요 IC : Qualcomm Atheros INT6400, INT1400	
이더넷 통신		TCP/IP, UDP 프로토콜 지원	Default IP: 192.168.0.3
		10/100BASE-T 지원	Subnetmask : 255.255.255.0
		PHY to PHY 통신 기능	Gateway : 192.168.0.1
		PING 테스트 기능 지원	동작모드 : TCP Server
		시리얼 통신을 이용한 이더넷 설정 기능	포트번호 : 3000
		(전용 설정 PC 프로그램 지원)	
		RS232 혹은 TTL레벨의 비동기(UART) 통신 지원	Default : 9600bps
시리	얼 통신	통신속도 : 9600bps ~ 115200bps 지원	
		(1start bit, 8data bits, none parity, 1stop bit)	
	전력선	전원LED, PLC인식LED, 이더넷 LINK LED	
	이더넷	LINK LED, ACT LED	
LED		시리얼 RXLED,TXLED,	
	시리얼	Status LED : 시리얼 제어 명령 동작 여부 표시	
		Connection LED : Client/Server 연결 표시	
		IP, Subnet Mask, Gateway 읽기 및 설정 기능	타사 전력선 통신 모듈과는
전용 PC		이더넷 통신 채널 설정	정상적으로 통신이 되지 않
프로그램		Mac address 읽기 기능	을 수 있습니다.
		전용 통신 프로그램(시리얼 데이터 송수신) 제공	

● Server 모드와 Client 모드: 이더넷 통신에서는 누가 접속을 시도하느냐에 따라서 Server와 Client 로 구별됩니다. 예를 들어, Naver와 개인용 PC를 보면, 개인용 PC(Client)가 접속을 시도하고, Naver(Server)는 이에 대한 접속 허락 여부를 결정합니다. 상점 주인(Server)과 손님(Client)으로도 비교가 가능합니다. 손님이 상점을 찾아가니까요... ^^

제품 배치도 (고정홀 위치, LED, 커넥터 표시)

제품 커넥터

	항 목		내 용	비고
	핀1		AC 전력선	SMW250-03
J1	핀2		Not used	(전력선 통신)
	핀3		AC 전력선	(연극인 6인)
	핀1		Not Used – Only for development	
J9	핀2		Not Used – Only for development	SMW250-05*2)
	핀3		RXD232 RS232레벨	(메인보드와 RS232
	핀4		TXD232 RS232레벨	통신시 사용)
	핀5		GND	
	핀6		Not Used – Only for development	N.C
	핀7		Not Used – Only for development	N.C
J3	핀1		GND	SMW250-02
	핀2		+12V	(SEP_310 모듈 전원)
	핀2 ^{*1)}		/Connection(Low: connected, High: disconnected)	
	핀4	In	RX 3.3V LVTTL (5V 사용 가능)	 1열* ³⁾
	핀6	Out	TX 3.3V LVTTL (5V 사용 가능)	_
	핀8		GND	(메인보드와 TTL레벨 통신시 사용)
	핀10		+12V	중인지 자공)
J8	핀12		+12V	
10	핀1		MISO	
	핀3		VCC (메인 보드 MCU 동작 전압)	2 Cd *4)
	핀5		SCK	2g* ⁴⁾
	핀7		MOSI	(메인보드와
	핀9		/RESET	── IO 연결 사용)
	핀11		GND	

통상적으로 J1, J3, J8 이 메인보드와 연결되면, 메인보드로 전력선 통신이 가능합니다. 단, 메인보드와 TTL 레벨의 통신을 하는 경우에는 J3 대신에 J* 커넥터를 사용합니다.

- *1) TCP socket(소프트웨어)이 Remote system 과 연결 혹은 단절됨을 의미합니다.
- *2) J9 커넥터는 전원 커넥터(J1)과 오삽 방지를 위해서 5 핀으로 사양을 결정함. (실제 3 핀만 사용)
- *3), *4) J8 커넥터는 1 열(TTL 레벨 통신 기능)과 2 열(기타 IO 통신 기능)로 기능이 구분되어 있으며, 2.54mm 핀 간격으로 배치되어 있음.

설치 및 사용 방법

STEP1: 전력선 통신 커넥터(J1-AC220V), 동작 전원 커넥터(J3-DC12V)를 연결합니다.

STEP2: UART 통신을 위한 RS232 레벨 커넥터(J9), TTL레벨 커넥터(J8)중 1개만 연결합니다.

주요 LED 설명

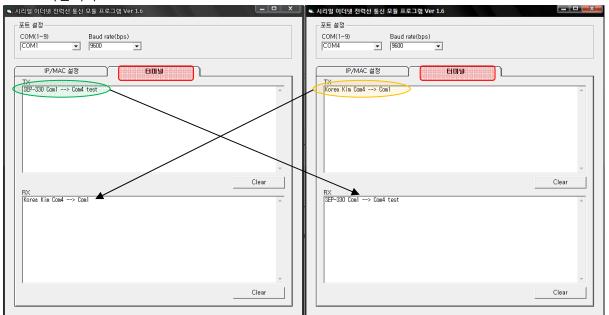
■ CMD : UART 통신중 SEP-310 설정 커맨드 모드로 동작하는 경우 ON됩니다. 이때 수신된 데이터는 전력선 통신으로 전달되지 않습니다.

■ Connection: Server 혹은 Client와 접속(Socket 통신)이 이루어지면 ON됩니다.

■ PWR, ■ LAN: 정상적인 DC 전원(J3)이 공급되면 ON됩니다.


■ PLC: 2개 이상의 전력선 모듈이 연결되어 있는 경우에 ON됩니다.

참고사항


- 1) Connection이 이루어진 후 마지막 data 통신 후, 20초가 경과하면, 자동으로 connection이 종료되고 초기화 됩니다. 이때 Clent가 연결 상태이거나 연결 시도시 즉시 연결됩니다.
 - *. Server 혹은 Client 통신 문제로 인한 과부하 방지
 - *. Client에 의한 Server 계속 접속으로 인한 타 장치 Connection 방해 문제 해결

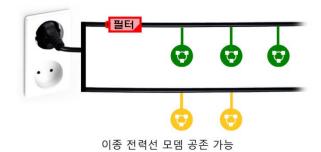
SEP-310 전력선 통신 실험 예제

SEP-310 전력선 통신을 실험하기 위해서는 각각의 모듈을 Server 와 Client 로 설정합니다

- 1. SEP-310 모듈 각각에 대하여 다음과 같이 연결합니다. (AC220V J1 연결, 전원 DC12V 연결, RS232 통신 PC 연결 위 화면은 PC 에 2 개의 컴포트가 있는 경우입니다.)
- 2. Server 측 / Client 측에는 네트워크 환경 및 채널을 위와 같이 설정하여, 각각 SEP-310을 쓰기합니다. 정상적인 읽기/쓰기인 경우 LED6-적색(Command LED)가 ON 후 OFF 됩니다.)
 - *. Server 로 설정된 채널중 목적지 IP 주소는 사용되지 않습니다.
- 3. Connection 이 이루어지면, SEP-310 모듈의 LED5-녹색(Connection LED)가 ON 됩니다. (일정시간 데이터를 주고 받지 않으면 Connection 이 해제되고, 재 연결되기를 반복합니다.)
- 4. 아래와 같이 터미널에서 TX 창에 입력하면, 상대방 Com 포트의 RX 창에 수신된 데이터가 표시됩니다.

*. 2 개 이상의 Client 가 동일한 목적지 IP 주소로 설정되어 있으면 접속이 되지 않을 수 있습니다.

개발시 유의 사항


- 0. 전력선 통신은 220V/60Hz 전원에서 사용하도록 설계되어 있습니다. 따라서, 감전의 우려가 있으므로 사용시 절대 주의하여 주십시요.
- 1. SEP-310은 전원이 투입된 후, booting 되는데 약 3초의 시간이 소요됩니다. 시리얼 통신으로 제어하기 위해서는 전원이 투입된 후, 최소 3초 이상을 기다려 주십시요. (Booting 이 되는데 소요되는 시간은 원격지의 전력선 통신과 connection 됨을 의미하지 않습니다.)
- 2. 통신 프로토콜에 의하여 통신속도(baudrate)를 변경하신 경우에는 반드시 변경된 통신 속도를 기억하셔야 합니다.

전원이 OFF 된 후에도 SEP-310 은 변경된 통신 속도를 항상 유지하고 있으며, 전원 ON 시에 변경된 통신속도가 적용됩니다. (Default 통신 속도: 9600bps)

- *. 만약 통신 속도를 잊으셨다면, 속도를 가변하면서 '+', '+', '+' 전송시 정상적인 ACK(0x06) 코드값이 응답되는지 확인하여 통신 속도를 확인하십시요.
- 3. 이더넷 통신에서 TCP/IP 통신을 하기위해서는 SERVER 와 CLIENT에 대한 정확한 이해가 필요합니다. 특히, SEP-310 SERVER 는 동시에 접속 가능한 수량이 1 개이므로, 2 개 이상의 CLIENT가 동시에 접속을 시도한 경우에 1 개만 접속이 가능합니다. 따라서, 사용환경에 최적화된 NETWORK 환경을 설정해야 합니다.
 - → N 개의 SERVER 와 1 개의 CLIENT 로 구성된 경우
 - *. CLIENT 는 원하는 SERVER IP 주소로 접속하여 통신이 가능합니다.
 - *. 데이터 수집시 가장 흔하게 사용되는 방법입니다.
 - → 1개의 SERVER 와 N 개의 CLIENT로 구성된 경우
 - *. SERVER 에 동시 접속할 수 있는 수량이 1 개로 제한되어 있으므로, N 개의 CLIENT 가 동시에 SERVER 에 접속할 수 없습니다. 적절한 time scheduling 에 의해서 CLIENT 가 통신을 해야 합니다.
 - *. 흔히 사용하는 Naver와 같은 인터넷 서버는 수 많은 사람(CLIENT)가 동시에 접속 가능하지만, 임베디드 시스템에서는 물리적인 제약으로 인하여 동시 접속 수량이 제한될 수 밖에 없습니다.
 - → N 개의 SERVER 와 N 개의 CLIENT 로 구성된 경우
 - *. 위 2 가지 방법의 혼합으로 Network 를 구성하는 방법이며, 통신의 효율성을 위해서 권장하지 않는 방법입니다.

4. 이종 전력선 모뎀 혹은 노이즈가 심한 환경에서는 다음과 같이 필터를 이용하셔 설치가능합니다.

[History]

2012.05.19	최초 작성	
2012.05.24	제품 배치도에 핀번호 추가함	
	배치도와 커넥터 핀 설명 일치 시킴	Page2
	J8 핀 4/핀 6 Net name 변경함	