

Features

- more energy Efficient than incandescent and most halogen lamps
- available in white, green ,blue ,red, red-orange and amber
- Very long operating life(up to 100k hours)
- Cool beam ,safe to the touch
- No UV
- low voltage DC operated
- Instant light (less than 100ns)
- Superior ESD protection
- Thin shape than other power LED package

Application

- traffic signal
- automotive
- architectural lighting
- camera flash light
- decorative lighting
- LCD backlingt

mechanical dimensions

Notes:

- 1, all dimensions are in millimeters(inches).
- 2. Tolerance is ± 0.2 mm(.008") unless otherwise noted.

				Dominate
		Typical	Viewing	Wavelength or
Color	P/N	luminous	Angle(degrees)	color
		Flux(1m)	2 θ 1/2	temperature
				(typ.)
White	LS-P0.5W11	28	100	5000K

Absolute Maximum Ratings at Ta=25 $^{\circ}\mathrm{C}$

parameter	white	Unit	
Power dissipation	600	mW	
Peak pulse forward current	350	mA	
DC forward current	200	mA	
LED junction temperature	120		
ESD classification(HBM per MIL-STD-883D)	Class2		
Operating temperature range	-40°C to +80°C		
Storage Temperature range	40°C to +120°C		

Relative spectral power distribution

Spectrum Distribution

Relative Intensity VS. Temperature

Typical Electrical/Optical Characteristics Curves (25°C Junction Temperature Unless Otherwise Noted)

Zhejiang GuYue LongShan Electronic Technology Development Co., Ltd.

Forward Voltage (Volts)

Figure 2A.
Forward Current vs. Forward
Voltage for LS-P1R4 and
LS-P1R04

Forward Voltage (Volts)

Figure 2A. Forward Current vs. Forward Voltage for LS-P104

Figure 2A.
Forward Current vs. Forward
Voltage for LS-P1G4

Figure 2A.
Forward Current vs. Forward
Voltage for LS-P1B4 and
LS-P1W1

Typical Electrical/Optical Characteristics Curves (25°C Junction Temperature Unless Otherwise Noted)

Page : _____

Zhejiang GuYue LongShan Electronic Technology Development Co., Ltd.

Figure 3A.
Relative Luminous Flux vs. Forward current for Red, Red-Orange and Amber

Forward Current (A)

Figure 3A.
Relative Luminous Flux vs. Forward current for Blue and White

Figure 3B.
Relative Luminous Flux vs. Forward current for Green

Zhejiang GuYue LongShan Electronic Technology Development Co., Ltd.

Angular Displacement (Degrees)
Figure 4A.
Typical Representative Spatial Radiation
Pattern for LS-P1R04

Angular Displacement (Degrees)
Figure 4B.
Typical Representative Spatial Radiation
Pattern for LS-P1R004

Angular Displacement (Degrees)
Figure 4D.
Typical Representative Spatial Radiation
Pattern for LS-P1A01

Angular Displacement (Degrees)
Figure 4E.
Typical Representative Spatial Radiation
Pattern for LS-P1604

Angular Displacement (Degrees)
Figure 4E.
Typical Representative Spatial Radiation
Pattern for LS-P1B04

Angular Displacement (Degrees)

Figure 4F.
Typical Representative Spatial Radiation
Pattern for LS-P1W01

Test Item	Test condition	Test Duration	on Failure
Criteria		TODO DULGOL	
Room Temperature Operation Life	25℃ or 55℃, IF=max	1000 hours	Note 2
(RTOL)	(Note 1)		
High I emperature Operation Life	55℃ or 85℃, IF=max DC		
(HTOL)	(Note 1)	1000 hours	Note 2
Low Temperature Operation Life (LTOL)	-40℃, IF=max DC	1000 hours	Note 2
Powered Temperature Life Cycle	-40℃ to 85℃,18mins dwell	200 cycles	Note 2
(PTLC)	time, 42mins transfer time (2		
	hour cycle),5mins ON/OFF,		
	IF=max DC		
High Temperature Storage Life (HTOL)	110℃	1000 hours	Note 2
Low Temperature Storage Life (LTOL)	-40°C	1000 hours	Note 2
Thermal shock(TS)	-40℃ to 120℃, 20mins dwell	200 cycles	No catastrophic
	Time/20secs transfer time		
Solder Heat Resistance (SHR)	260℃±5℃, 10secs		No catastrophic
Solderability	Steam age for 16 hrs, then		Solder coverage
	Solder dip at 245℃ for 5 secs		on lead
Salt Atmosphere	35℃	48 hours	No catastrophic
Mechanical Shock	1500G, 0. 5msec pulse, 5		No catastrophic
	Shocks each 6 axis		
Natural Drop	On concrete from 1.2m,		No catastrophic
	3times		
Random Vibration	6G RMS from 10 to 2KHZ		No catastrophic
10mins/axis			
Lead Strength	1 Ib, 30 secs		No catastrophic
Lead Fatigue	1 Ib, 3×45° bend		No catastrophic
Variable Vibration Frequency-1	10-2000-10 HZ, log or linear		No catastrophic
	Sweep rate, 20G about 1 min,		
	1.5mm, 3times/axis		
Variable Vibration Frequency-2	$10-55-10$ HZ, ± 0.75 mm No catastrophi		
	55-2000, 10G, 1 octave/min,		
	3times/axis		

Note 2: Failure criteria includes units with catastrophic failures, or units with greater than 50% Iv degradation at 1000hrs, or an average Iv degradation for the test of greater than 35% at 1000hrs